247 research outputs found

    The tool switching problem revisited.

    Get PDF
    In this note we study the complexity of the tool switching problem with non-uniform tool sizes. More speci cally, we consider the problem where the job sequence is given as part of the input. We show that the resulting tooling problem is strongly NP-complete, even in case of unit loading and unloading costs. However, we show that if the capacity of the tool magazine is also given as part of the input, the problem is solvable in polynomial time.Research; Studies; Complexity; Job; Costs; Time;

    A lower bound on CNF encodings of the at-most-one constraint

    Full text link
    Constraint "at most one" is a basic cardinality constraint which requires that at most one of its nn boolean inputs is set to 11. This constraint is widely used when translating a problem into a conjunctive normal form (CNF) and we investigate its CNF encodings suitable for this purpose. An encoding differs from a CNF representation of a function in that it can use auxiliary variables. We are especially interested in propagation complete encodings which have the property that unit propagation is strong enough to enforce consistency on input variables. We show a lower bound on the number of clauses in any propagation complete encoding of the "at most one" constraint. The lower bound almost matches the size of the best known encodings. We also study an important case of 2-CNF encodings where we show a slightly better lower bound. The lower bound holds also for a related "exactly one" constraint.Comment: 38 pages, version 3 is significantly reorganized in order to improve readabilit

    Robotic flowshop scheduling is strongly NP-complete

    Get PDF

    The approximability of tool management problems

    Get PDF

    Upper and Lower Bounds for Weak Backdoor Set Detection

    Full text link
    We obtain upper and lower bounds for running times of exponential time algorithms for the detection of weak backdoor sets of 3CNF formulas, considering various base classes. These results include (omitting polynomial factors), (i) a 4.54^k algorithm to detect whether there is a weak backdoor set of at most k variables into the class of Horn formulas; (ii) a 2.27^k algorithm to detect whether there is a weak backdoor set of at most k variables into the class of Krom formulas. These bounds improve an earlier known bound of 6^k. We also prove a 2^k lower bound for these problems, subject to the Strong Exponential Time Hypothesis.Comment: A short version will appear in the proceedings of the 16th International Conference on Theory and Applications of Satisfiability Testin

    The cyclic-routing UAV problem is PSPACE-complete

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. Consider a finite set of targets, with each target assigned a relative deadline, and each pair of targets assigned a fixed transit flight time. Given a flock of identical UAVs, can one ensure that every target is repeatedly visited by some UAV at intervals of duration at most the target’s relative deadline? The Cyclic-Routing UAV Problem (cr-uav) is the question of whether this task has a solution. This problem can straightforwardly be solved in PSPACE by modelling it as a network of timed automata. The special case of there being a single UAV is claimed to be NP-complete in the literature. In this paper, we show that the cr-uav Problem is in fact PSPACE-complete even in the single-UAV case
    • …
    corecore